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Optical Bragg acceleration structures are waveguides with a vacuum core and dielectric layers as a cladding,
designed to guide laser light at the speed-of-light TM mode and accelerate charged particles. In this study, we
analyze the electromagnetic forces exerted on the dielectric layers of a planar structure by both the guided laser
light and the wake-field of moving charges. The distribution of the volume force densities, as well as the
surface force densities, in the interfaces between the layers as a result of the laser propagation is given, and
analytic scaling laws for the maximal values are obtained. Separation of the wake-field into the structure’s
eigenmodes is essential in order to determine the different contributions of the wake-field to the total impulse
that acts on the structure. It is shown that the impact of the wake-field on the structure results almost entirely
from the fundamental TM mode. While the total force on the dielectric layers may be significantly stronger
than the gravitational force, we show that for typical structures, the pressures that develop are orders of
magnitude below the damage threshold.
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I. INTRODUCTION

Optical acceleration of charged particles, where particles
are accelerated by laser light rather than by microwave ra-
diation, is a subject of increasing interest. Due to the high
loss of metals at optical wavelengths, optical acceleration
structures are likely to be made of dielectric materials, which
are also less susceptible to breakdown. One type of structure
that may be used is an open optical structure, as in the LEAP
�1� crossed laser beam experiment, where the interaction be-
tween the crossed laser beams and the particles is limited by
slits to satisfy the Lawson-Woodward theorem �2,3�. Another
type of structure is the dielectric waveguide, an example of
which is the two-dimensional photonic band-gap structure
with a vacuum tunnel bored in its center �4�. In such a con-
figuration, a laser pulse propagates at the speed-of-light
mode �phase velocity vph=c� while accelerating a bunch of
charged particles in the vacuum tunnel. Alternatively, one-
dimensional photonic band-gap structures, namely, Bragg re-
flection waveguides �5–7� specifically designed for the
speed-of-light mode, were suggested as acceleration struc-
tures �8�. A possible coupling scheme to this acceleration
structure was recently proposed �9�.

Optical Bragg acceleration structures, either planar or cy-
lindrical, having typical transverse dimensions of a few mi-
crons, exhibit high performance as acceleration structures
and therefore seem to be promising candidates for future
optical accelerators. In the present study, we focus on the
planar optical Bragg acceleration structure illustrated in Fig.
1. The laser light is guided between two mirrors separated by
a distance 2Dint, so that the wave propagates along the z axis,
and no variations are assumed along the y axis �� /�y�0�.
The mirrors consist of dielectric layers with alternating per-
mittivity, having transverse quarter-wave width with the ex-
ception of the innermost layer. This first layer is a matching
layer whose width is determined so that the structure sup-

ports the speed-of-light TM mode required for the accelera-
tion process �8�. It was shown that, generally, Bragg
waveguides may be designed for a given symmetric field
distribution �10�.

It is evident that if accelerators are to work at optical
wavelengths, then the acceleration structures will be about
three orders of magnitude smaller in the narrow transverse
dimension of the cross section than current structures driven
by microwave sources, as the structures will be made of
micron-scale dielectrics instead of centimeter-size metallic
walls. At the same time, the electromagnetic fields due to the
traveling wave will be significantly stronger. Moreover, since
the overall amount of charge is expected to remain similar to
that of current accelerators, the electromagnetic wake-field
resulting from the motion of these charges will be stronger as
well. These intense electromagnetic fields exert forces on the
dielectric structure, commonly referred to as “radiation pres-
sure.” Electromagnetic forces were previously investigated
in photonic crystals �11�, and the total pressure on the mir-
rors of Bragg reflection waveguides was demonstrated to be
of great appeal subject to proper design �12,13�. It is the
purpose of this study to evaluate these forces as they may
impose constraints on future optical acceleration structures.
Specifically, strong enough forces may deform the dielectric
layers, change their width, and consequently detune the
waveguide from the transverse resonance of the synchro-
nized speed-of-light mode. Moreover, high pressures may
cause crack formation and damage to the structure.

*Electronic address: amitmiz@tx.technion.ac.il FIG. 1. Configuration of the planar optical Bragg accelerator.
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The organization of this paper is as follows. In Sec. II, a
general formulation of the Lorentz force densities in layered
media is developed. In Sec. III, we examine the time-
averaged forces exerted by laser light guided at the funda-
mental speed-of-light TM mode. A detailed analysis of the
wake-field is given in Sec. IV, where the electromagnetic
field excited by the moving charges is separated into the
different modes of the structure. This crucial information is
exploited in Sec. V for the evaluation of the impact of the
wake-field on the optical Bragg acceleration structure.

II. GENERAL FORMULATION OF THE LORENTZ FORCE
DENSITIES

In this section, we develop a general formulation of the
force densities on dielectric layers in the presence of an elec-
tromagnetic field. The treatment here relies on macroscopic
electromagnetic concepts, where the material is represented
by a polarization density with associated polarization volume
or surface currents and charges. The local Lorentz force may
then be calculated directly, as resulting from the interaction
of the electromagnetic field and these effective charges and
currents �14�. In a similar approach, Planck �15� calculated
the pressure exerted by a plane wave incident upon a metallic
plate. In addition to the expressions for a general electromag-
netic field, we are interested in the time-averaged expres-
sions of a time-harmonic signal. Recently, this approach was
used for the calculation of optical forces �16�.

A. Volume force densities

Within the dielectric layers, the Lorentz volume force
density is given by

f� = �E� + J� � B� , �1�

where � is the instantaneous electric charge density, J� is the

instantaneous electric current density, E� is the instantaneous

electric field, and B� is the instantaneous magnetic induction.
In a polarizable material with instantaneous polarization den-

sity P� , the macroscopic effective charge density is

�=−� ·P� , and the effective current density is J� =�P� /�t.

Since in a dielectric material �0�rE� =�0E� +P� and � ·E� =0 as
there is no free charge, it follows that �=0. Therefore only
the second term in Eq. �1� is nonzero, and the volume force

density, using B� =�0H� , reads

f� = �0��r − 1�
�E�

�t
� �0H� . �2�

Specifically, for time harmonic fields of time-dependence
ej�t, the time-average force density is given by

�f�� =
1

2
Re�− j��0��r − 1�E� * � �0H� � , �3�

where E� and H� are the frequency domain electric and mag-
netic fields, respectively.

B. Surface force densities

At the interfaces between the dielectric layers, a polariza-
tion surface charge is created, giving rise to a surface force
density. The instantaneous polarization surface charge be-
tween layer � and layer �+1, as shown in Fig. 2, is given by

�s,� = − 1�x · �P� �+1
�−� − P� �

�+�� , �4�

where P� �+1
�−� and P� �

�+� are the polarization densities at the in-
terface in layer �+1 and layer �, respectively. The Lorentz
force per unit area is obtained by multiplying the polarization
surface charge density by the average of the perpendicular
electric fields from both sides of the discontinuity �15�. De-
fining Ex,�

�+� and Ex,�+1
�−� as the x components of the electric field

at the boundary in layer � and layer �+1, respectively, we
obtain for the surface force density

Fx,� = �s,�
1

2
�Ex,�

�+� + Ex,�+1
�−� � . �5�

Using the boundary condition ��Ex,�
�+�=��+1Ex,�+1

�−� together
with Eq. �4�, the surface force density at the boundary reads

Fx,� =
1

2
�0�Ex,�

�+��2� ��
2

��+1
2 − 1	 . �6�

This total surface force density may be conveniently divided
into two contributions from the two polarization densities of
each layer at the interface. For this purpose, we may postu-
late the existence of an infinitesimal vacuum gap between the
two layers, and then the force density is calculated on each of
the two surface polarization charges. The force density on
the surface charge of layer � is given by

Fx,�
�−� =

1

2
�0�Ex,�

�+��2���
2 − 1� 	 0, �7�

and the force density on the polarization surface charge of
layer �+1 is

FIG. 2. An interface between two dielectric layers, where a
polarization surface charge density is formed.
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Fx,�
�+� = −

1

2
�0�Ex,�+1

�+� �2���+1
2 − 1� 
 0, �8�

and Fx,�=Fx,�
�−�+Fx,�

�+�. In the two above inequalities, we have
assumed that ��	1, leading to the conclusion that the effect
of these forces is to pull each of the two layers at the inter-
face towards the other, as illustrated in Fig. 2. For time-
harmonic fields, the time-average of the surface force densi-
ties is readily obtained by multiplying the expressions of
Eqs. �6�–�8� by 1/2 and replacing the time-dependent elec-
tric fields by the absolute value of the complex fields.

III. FUNDAMENTAL MODE FORCES

Let us consider a planar acceleration structure guiding
laser light at wavelength �0 with corresponding angular fre-
quency �0=2�c /�0. In what follows we shall examine the
time-averaged force densities on the structure. In the vacuum
core, the speed-of-light TM mode guided by the structure,
assuming a time dependence of ej�0t, is of the form �8�

Ez = E0e−j��0/c�z,

Ex = E0� j
�0

c
x	e−j��0/c�z,

Hy =
E0

0
� j

�0

c
x	e−j��0/c�z. �9�

The total transverse pressure exerted on the mirrors may be
found by integrating the time-averaged Maxwell stress-
tensor �17� over a closed surface. Within the vacuum core,
the time-averaged Maxwell stress-tensor component �Txx� for
a TM mode reads

�Txx� =
1

4
�0
Ex
2 −

1

4
�0
Ez
2 −

1

4
�0
Hy
2, �10�

and given Eq. �9�, we are left with

�Txx� = −
1

4
�0
E0
2. �11�

Enclosing one mirror by a rectangular surface, only the Txx
component contributes to the integral, as the Txz component
has zero contribution due to symmetry, and the Txy compo-
nent is identically zero. Assuming that the laser field decays
to zero at x= ±�, the time-averaged transverse pressure ex-
erted by the guided mode on the Bragg mirror located at x
=Dint is

�Fx,T� =
1

4
�0
E0
2; �12�

the subscript T indicates total pressure. Hence, for a given
accelerating gradient E0, the total transverse pressure is re-
pelling and is independent of the details of the structure, that
could be, for example, a dielectric loaded metallic transmis-
sion line. For comparison purposes, we note that this pres-
sure is 1 /4 of the pressure exerted by a plane wave of am-

plitude E0 incident perpendicularly upon a perfect metallic
plate. Assuming that the gradient of interest is E0
=1 GV/m, the total pressure is �Fx,T��2.2�10−6 N/�m2.

Evaluation of the time-averaged volume force densities of
the acceleration TM mode is performed next according to
Eq. �3�. The transverse component is given by

�fx� =
1

2
Re�j�0�0��r − 1�Ez

*�0Hy� . �13�

Bearing in mind that the ratio Hy /Ex inside the lossless di-
electric layers is a real constant, the longitudinal component
of the volume force density reads

�fz� =
1

2
Re�− j�0�0��r − 1�Ex

*�0Hy� = 0, �14�

which vanishes as it is the real part of an imaginary quantity.
The third component of the volume force density is fy �0 for
TM modes. The surface force densities are computed using
the time-average of Eqs. �6�–�8�, so that the total pressure,
given by Eq. �12�, is the sum of all transverse force densities,
and explicitly,

�Fx,T� = �
�=0

� �Fx,�� + �
x�

x�+1

dx�fx�x���; �15�

x� denotes the boundary between layer � and layer �+1 �see
Fig. 2�, and �=0 denotes the core. Practically, the above
equation may be verified numerically by carrying out the
summation up to some layer where the fields have suffi-
ciently decayed to be considered negligible.

The above expressions for the force densities may now be
utilized for Bragg acceleration structures, and particularly,
the analysis of two structures made of SiO2 ���r=1.45� and
Si ���r=3.45� with core half-width Dint=0.3�0 is given in
Fig. 3 �volume force densities� and Fig. 4 �surface force den-
sities�. In each figure, the frames in the left column corre-
spond to a structure having the SiO2 as the matching layer
adjacent to the core, and the right column corresponds to a
structure with Si as the layer adjacent to the core. When the
lower refractive index is used for the matching layer, the
maximum of the volume force density is obtained inside the
second layer �Fig. 3�c��, whereas in the second case, the
maximum is obtained inside the matching layer �Fig. 3�d��.
The surface force densities �Fx,�

�−��, �Fx,�
�+��, and �Fx,��, are

shown in Fig. 4. The total surface force density �Fx,�� �Figs.
4�e� and 4�f�� peaks at the vacuum-dielectric interface. Inside
the periodic part of the Bragg mirror, Ex vanishes every other
interface �8�, and accordingly, all three surface force densi-
ties vanish as well.

The total internal pressure at some point within the layers
against an external mechanical enforcement is given by the
cumulative sum of both surface and volume force densities
starting from the vacuum core up to the point of interest,
similarly to the sum of Eq. �15�, which is up to x=�. This
pressure, which we denote by �Fpr�, is depicted in Figs. 3�e�
and 3�f�. It is seen that in the layers that are close to the
vacuum core, the pressure is negative, pulling these layers
towards the core. Farther away from the core, the pressure
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becomes positive and approaches �Fx,T�= 1
4�0
E0
2 �not seen

clearly in the figure due to the scale�.
It is worth noting that for the structure with SiO2 as the

matching layer, as can be seen in Fig. 3�a�, Ez vanishes at the
interface of the matching layer and the bordering layer, and
therefore, the electromagnetic field of this structure up to the
plane x=x1 is identical to that of a dielectric loaded trans-
mission line. Obviously, the electromagnetic forces exerted
on the dielectric layers inside the transmission line would be
identical to the forces shown here on the matching layer in
Figs. 3�c� and 3�e�, and Figs. 4�a�, 4�c�, and 4�e�.

Assuming that the accelerating gradient E0 remains con-
stant, the larger the core half-width Dint is, the stronger the
fields at the vacuum-dielectric interface are, and conse-
quently, the forces inside the dielectric layers become stron-
ger. In Fig. 5 we consider acceleration structures with SiO2
as the matching layer and with Dint ranging from 0.3�0 to
0.8�0 and plot the maximal values of the force densities,

�fx�
max, 
�Fx�
max, 
�Fx

�+��
max, and 
�Fx
�−��
max, in each device.

For each value of Dint, the device is designed according to
the principles given in Ref. �8�, so that the kz=�0 /c accel-
eration mode is supported by the structure. By calculating
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FIG. 3. �Color online�. Volume force densities
in two Bragg structures made of SiO2 �indicated
by lighter gray� and Si. �a� and �b� Two of the
electromagnetic field components, �c� and �d�
volume force densities, and �e� and �f� total inter-
nal pressure. The left column frames correspond
to a structure with SiO2 as the matching layer,
and the right column corresponds to Si as the
matching layer.
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FIG. 4. �Color online�. Surface force densities
in two Bragg structures made of SiO2 �indicated
by lighter gray� and Si. �a� and �b� Left sided
force �Fx,�

�−��, �c� and �d� right sided force �Fx,�
�+��,

and �e� and �f� total force �Fx,��. The left column
frames correspond to a structure with SiO2 as the
matching layer, and the right column corresponds
to Si as the matching layer.
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the fields inside the dielectric layers given the vacuum field
�Eq. �9��, it is possible to show that the behavior of the maxi-
mal volume force density takes the form


�fx�
max = �
�

2
1 + ��0Dint

c
	2�1 − 1

�1
2 ��0
E0
2

�0
, �16�

where � is a constant independent of Dint. When the maxi-
mum is obtained in the matching layer, �=�1

��1−1, and
when the maximum is in the second layer, as in the case of
Fig. 5, �= ��2−1�Z2 /Z1

2, where Z�=0
���−1/��, �=1,2 are

the transverse impedances. Since the maximal surface force
density is obtained at the vacuum-dielectric interface, Eq. �6�
may be used to calculate directly this quantity, which is
given by


�Fx�
max =
1

4
��0Dint

c
	2�1

2 − 1

�1
2 �0
E0
2. �17�

The two above equations are scaling laws that are among the
main results of this study.

IV. WAKE-FIELD ANALYSIS

A general treatment of wake-fields in dielectric accelera-
tion structures was given in Ref. �18�, and the wake-field of
a line-charge inside a Bragg structure was considered in Ref.
�8�. In this section, we further investigate the wake-field in a
Bragg acceleration structure, separating the wake into the
structure’s eigenmodes following a method proposed in Ref.
�8�. This analysis is utilized in the subsequent section for the
evaluation of the impact of the wake-field on the acceleration
structure.

A. The general wake-field integral

We are interested in the wake-field created by a line-
charge, infinite in the y direction, and moving in the z direc-

tion within the acceleration structure with a constant velocity
v, or explicitly, having the current density

Jz�x,z,t� = − qv��x���z − vt� , �18�

where �−q� is the charge per unit length. The electromagnetic
field in the vacuum core is divided into two contributions:
the field generated by the line-charge in free space �primary
field�, and the field reflected from the surrounding structure
�secondary field�. In the ultrarelativistic limit ��= �1
−v2 /c2�−1/2→��, the secondary longitudinal electric field is
given by �8�

Ez
�sec���� =

Eq

2
�

−�

�

d�̄ej�̄�̄ 1

1 − R��̄�
1 + R��̄�

+ j�̄

. �19�

In the above equation, Eq�q / �2��0Dint�, �� t−z /c,
����1−1Dint / ��1c�, �̄���, �̄�� /�, and �1 is the dielectric
coefficient of the material adjacent to the vacuum region.
The surrounding structure is represented by the reflection
coefficient R��̄�, which is the relation between the outgoing
and incoming waves just outside the vacuum tunnel. Thus
the wake-field is given as a spectrum of propagating waves,
all having longitudinal wave number kz=� /c.

B. Wake-field initial and final values

As will be shown in the subsequent section, the value of
the deceleration force on the moving particle is essential for
the understanding of the separation of the wake to the struc-
ture’s eigenmodes. It was previously pointed out in Refs.
�8,18� that in case of a single particle, this deceleration force
is dependent only on the size of the vacuum core and the
permittivity of the material surrounding the structure, rather
than on the details of the structure at x	Dint. We shall next
present a general proof of this concept, based on the initial
value theorem �19�.

Due to causality, Ez
�sec���
0�=0, and therefore the inverse

Fourier transform of Eq. �19� obeys the initial value theorem,
which states that

Ez
�sec��0+� = lim

�̄→�
j�̄2�

Eq/2

1 − R��̄�
1 + R��̄�

+ j�̄

= lim
�̄→�

�Eq

1 +
1

j�̄

1 − R��̄�
1 + R��̄�

. �20�

If we consider any practical structure, then the reflection
coefficient satisfies 
R��̄�

1, and therefore

�1−R��̄�� / �1+R��̄��
 is both upper and lower bounded, and
Eq. �20� becomes

Ez
�sec��0+� = �Eq. �21�

The decelerating field is the secondary field acting on the
charged particle at its own location, which is the average
of the inverse Fourier transform values at Ez

�sec��0+� and
Ez

�sec��0−�, given by
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FIG. 5. Maximal values of the volume and surface force densi-
ties as a function of the core half-width for a structure having SiO2

as the matching layer. The maximal volume force density 
�fx�
max is
normalized by �0E0

2 /�0, whereas the surface force densities are nor-
malized by �0E0

2.
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Edec =
�

2
Eq =

�

2

q

2��0Dint
. �22�

For completeness, we may also employ the final value
theorem �19� to obtain the value of the wake-field at �→�,
which reads

lim
�→�

Ez
�sec���� = lim

�̄→0
j�̄2�

Eq/2

1 − R��̄�
1 + R��̄�

+ j�̄

= 0. �23�

Clearly, the wake-field decays to zero a sufficiently long time
after the charge passes, since the electromagnetic field that
follows it escapes from the structure. The conclusions drawn
here apply also for a closed structure, such as the dielectric
loaded transmission line, if it is conceived as having infini-
tesimal losses.

C. Wake-field and eigenmodes

The denominator in the integrand of Eq. �19� is, in fact,
the dispersion function for kz=� /c, such that zeros of this
function �poles of the integrand� are eigenfrequencies of the
structure. Thus the dispersion function F��̄� is defined over
the complex �̄ plane by

F��̄� �
1 − R��̄�
1 + R��̄�

+ j�̄ . �24�

Although it is possible to perform the integral of Eq. �19�
numerically, when the structure is more confining, the inte-
grand becomes closer to being singular, making the integra-
tion a more difficult numerical task. Specifically for the
Bragg structure, when more layers are added, the structure
guides the propagating modes with less confinement losses,
and the poles are closer to the real �̄ axis. Another possibility
for evaluation of the wake-field integral, as suggested in Ref.
�8�, is to use the residue theorem, resulting in the expression

Ez
�sec���� =

Eq

2 �
n

2�j
1

F���̄n�
ej�̄n�̄u��� , �25�

where the prime denotes derivative with respect to �̄, �̄n are
the zeros of F��̄�, and u��� is the unit step function defined
by

u��� � �0, � 
 0

0.5, � = 0

1, � 	 0.
� �26�

Except for a zero that may be on the imaginary �̄ axis, all the
zeros appear in complex conjugate pairs. It is, therefore, pos-
sible to rewrite Eq. �25� as a summation over zeros with
non-negative real part only, in the form

Ez
�sec���� = �Eq�

n=1

�

Wn cos��R,n� + �n�e−�I,n�u��� , �27�

where the weights Wn are real and positive, �n are real, �n
= �̄n /���R,n+ j�I,n, and according to Eq. �21�, we obtain

�
n=1

�

Wn cos��n� = 1. �28�

Two extreme cases of planar structures that are relevant to
the present discussion are the dielectric loaded metallic �or
perfect magnetic� transmission line, and a vacuum tunnel
bored in a homogeneous dielectric material. In the first case,
the closed structure has truly guided eigenmodes at real fre-
quencies �̄n. The second exhibits only one zero of the dis-
persion function F��̄� on the imaginary axis of the complex
�̄ plane, corresponding to a pure exponential decay. The
Bragg structure is in between the two aforementioned cases,
having modes with both oscillations and exponential decay,
including one zero on the imaginary axis. The decay of the
modes is due to both the confinement losses caused by the
finite number of Bragg layers, and to the passbands allowing
waves to propagate transversally, and thus escape the struc-
ture. For the Bragg structure, an analytic expression exists
for the reflection coefficient R��̄�, and therefore, both F��̄�
and F���̄� have an analytic expression as well. However, the
zeros in the complex plane of F��̄� are found numerically.

As a reasonable configuration, we consider a Bragg struc-
ture with Dint=0.3�0, having a matching layer made of SiO2
and ten periods of alternating Si and SiO2 transverse quarter-
wave layers ��0 / �4���−1��. In Fig. 6 �top left�, the total
longitudinal electric field is presented, as well as the funda-
mental mode only, and a curve representing the remainder of
the modes. After only a few fundamental mode wavelengths
behind the charge, the nonfundamental modes undergo con-
siderable attenuation, and the fundamental mode is the domi-
nant part of the wake. The weights Wn and the relative
phases �n of Eq. �27� are presented in the top right and the
bottom left frames of Fig. 6, respectively, as a function of
�R,n. There are about ten modes per �0 corresponding to the
ten periods of the transverse periodic structure. As can be
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FIG. 6. �Color online�. Wake-field in a SiO2-Si structure with
Dint=0.3�0. Top left: The longitudinal electric field at t=0 divided
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right: the mode weights Wn. Bottom left: the mode phases �n. Bot-
tom right: the mode attenuation � per 1000�0.
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seen, the dominant weight, W11, is that of the fundamental
mode at �R,11=�0 with �11�0. We shall denote the weight
of the fundamental mode by Wfun, and here Wfun�0.305,
which means that it is responsible for about 30% of the de-
celeration force acting on the moving charge. The weight of
the fundamental mode may also be calculated from the cold
parameters of the structure by �20,21�

Wfun �
Zint

0�0

Dint

�0

�gr

1 − �gr
, �29�

where the interaction impedance is given by Zint= 
�0E0
2 / P,
P being the flowing power per unit length in y, and �gr
=vgr /c is the normalized group velocity. The longitudinal
attenuation per 1000�0 of each one of the modes that form
the wake-field is given in Fig. 6 �bottom right�, calculated
directly from �I,n. The fundamental mode has an attenuation
of 0.13 dB/1000�0, and there are 15 more modes below
100�0 that have an attenuation of less than 3 dB/1000�0 and
may therefore be considered guided modes.

V. WAKE-FIELD EFFECT ON THE STRUCTURE

The wake-field analysis in the previous section is used in
this section for the evaluation of the wake’s impact on the
structure. Since the wake-field is a transient phenomena, the
quantity of interest is the impulse that acts on the structure.
The related problem of momentum transfer from passing
electrons to small particles was previously addressed �22�.
Subsequently to the evaluation of the impact of the wake-
field alone, we estimate the combined effect of the wake and
the driving laser.

A. The impulse integral

In order to evaluate the wake-field impulse, we enclose a
section of the top Bragg mirror of Fig. 1 by a rectangular box
having length �z and width �y, and the bottom of the box is
at some 0
xin
Dint. It is assumed that beyond the outer-
most dielectric layer, there is a layer of material that absorbs
the Cerenkov radiation emitted by the charges, located at
xout. That is to say that the structure absorbs all of the emitted
radiation. The total force Fx�t� may be written in terms of the
Maxwell stress-tensor components Txx�x ,z , t� and Txz�x ,z , t�,
bearing in mind that Txy �0, by

Fx�t� = �y�
0

�z

dz�− Txx�xin,z,t�� + �y�
xin

xout

dx�− Txz�x,0,t��

+ �y�
xin

xout

dxTxz�x,�z,t� −
1

c2

d

dt
�y�

0

�z

dz�
xin

xout

dx�E�

� H� � · 1�x. �30�

For the total impulse, the instantaneous force is integrated in
time. After the integration, the second and third terms of the
right-hand side of Eq. �30� cancel out, since the wake-field is
a function of t−z /v, and therefore the integral of Txz in time
is independent of z. The remaining terms are given by

�
−�

�

dtFx�t� = − �y�
0

�z

dz�
−�

�

dtTxx�xin,z,t�

−
1

c2�y��
0

�z

dz�
0

�

dx�E� � H� � · 1�x�
t=−�

t=�

.

�31�

The integral of the first term of the above equation over z is
trivial since the time integral of Txx is independent of z. In
addition, the fields at t=−� are zero since the charges have
yet to arrive, and the fields at t=� are zero as the wake had
already escaped from the structure. It follows that the second
term of the above equation vanishes as well, and the impulse
per unit area reads

�p =
1

�y�z
�

−�

�

dtFx�t� = − �
−�

�

dtTxx, �32�

where we have omitted the dependence of Txx on time and
space. In order to further simplify the impulse integral, we
recall that the expression for Txx is given by

Txx =
1

2
�0Ex

2 −
1

2
�0Ez

2 −
1

2
�0Hy

2, �33�

where each of the field components is the sum of the primary
and secondary contributions. The impulse can be divided
into three terms, �p�pri�, which is the result of the integration
over the square of only the primary fields, �p�sec�, resulting
from the secondary fields, and �p�pri,sec�, which is the result
of integration over the cross products, so that

�p = �p�pri� + �p�sec� + �p�pri,sec�. �34�

Regardless of the velocity of the moving charge v, the first
term is identically zero since it corresponds to the case where
the charge travels in free space, and therefore �p�pri� repre-
sents the impulse experienced by a vacuum region, which is
clearly zero. The last term approaches zero as �→�, since
the primary field is confined to the vicinity of the �=0 plane,
while its intensity is bounded for x�0, and consequently, the
integral over time vanishes. This can be seen, for example,
from the expression of the longitudinal electric primary field,
which is given by

Ez
�pri� = Eq

��z − vt�/Dint

��z − vt�
Dint

�2

+ � x

Dint
	2 . �35�

Consequently, only the secondary field is of significance, and
recalling that the ultrarelativistic wake is a spectrum of kz
=� /c fields, the first and last terms of Eq. �33� cancel out
such that Txx=− 1

2�0Ez
2, and the impulse integral reduces to

�p =
�0

2
�

0

�

d��Ez
�sec��2. �36�

This expression for the total impulse is suitable for a single
bunch, as well as a finite train of bunches, as will be dis-
cussed subsequently.
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A simple analytic result may be obtained for the case of a
single bunch in a vacuum tunnel bored in a homogeneous
dielectric material of permittivity �1 �R�0 in Eq. �19��, for
which the secondary field reads

Ez
�sec� = Eq�e−�̄u��� . �37�

Substituting the above equation into Eq. �36� yields

�p =
�2Dint

��1 − 1

4�1c
�0Eq

2. �38�

B. Impulse of a train of microbunches

Efficiency considerations are likely to dictate that a train
of microbunches, rather than a single bunch, are to be fed
into the optical Bragg acceleration structure. One of the ad-
vantages of such an acceleration scheme is that the energy
may be recycled, consequently increasing the total efficiency
�21�. We, therefore, consider a total amount of charge −Q
divided into M microbunches, each of charge −q, where Q
=Mq, separated by a distance �0 from each other and trav-
eling at an ultrarelativistic velocity. The wake-field of the
train is a superposition of the wake-fields of the individual
bunches, and the total resulting field may be substituted into
Eq. �36� to obtain the impulse experienced by the structure.

The longitudinal electric field of the train Ez
�sec� can be

separated into two terms, one is the contribution of all the
bunches to the fundamental mode, and the other is the re-
mainder, namely, the contribution to the nonfundamental
modes. The first term represents a buildup of the fundamen-
tal mode which adds up in phase, each bunch adding
Wfun�Eq to the amplitude of the fundamental mode trailing
behind it. On the other hand, the nonfundamental modes are
not in phase, so that the part of the wake that remains guided
inside the structure adds up incoherently. It is, therefore, im-
portant to distinguish between the two corresponding contri-
butions to the total impulse. We denote by �pfun the funda-

mental mode contribution, and the contribution of the
nonfundamental, including the cross products between fun-
damental and nonfundamental modes, is denoted by �pnf, so
that �p=�pfun+�pnf.

Let us consider the SiO2-Si Bragg structure described in
Sec. IV C, having Dint=0.3�0, and for comparison purposes,
we examine three more structures: a similar Bragg structure
with Dint=0.8�0, a dielectric loaded metallic transmission
line �TL� with Dint=0.3�0, and another with Dint=0.8�0.
While the structures having Dint=0.3�0 are single mode, i.e.,
have only one symmetric TM mode at �0, a core half-width
of Dint=0.8�0 is large enough so that there are two such
modes, which is undesirable. Nevertheless, these structures
demonstrate the dependence of the quantities of interest on
the core width. The wake-field of the dielectric loaded trans-
mission line, which is treated in Refs. �8,23,24�, can be rep-
resented in the form of Eq. �27� with �n�0 and �I,n�0. The
interaction impedance Zint, the normalized group velocity
�gr, and the attenuation of the fundamental mode �, which
are cold parameters, are presented in Table I for the four
structures of interest. The wake-field parameters Wfun and the
number of wake-field modes below 100�0 are given as well.
It is evident that in the Bragg structure, significantly more
modes participate in the wake-field than in the metallic struc-
tures, and the fundamental mode is less dominant.

When calculating the contribution of one microbunch to
the impulse, we assume that the length of the structure is
Lacc=1000�0, and consequently, the wake-field effectively
vanishes behind each microbunch after that length, so that
the integration of Eq. �36� is carried out up to Lacc /c. It is
further assumed that above the frequency 100�0, the materi-
als may be considered transparent ��r�1�, and therefore
only the modes with �R,n
100�0 are taken into account.
The quantities �pfun and 
�pnf
, as a function of M, are de-
picted in Fig. 7 for the four structures. All curves are nor-
malized by �0EQ

2 T0, where EQ�Q / �2��0Dint�, and T0

=2� /�0. For all four structures, 
�pnf
 is smaller than 4% of
�pfun, and particularly for the Bragg structures, 
�pnf
 is no

TABLE I. Comparison between the total wake-field impulse in four structures. Cold and wake-field
parameters are also presented. The dominance of the fundamental mode in the impulse is evident.

Bragg structures Dielectric loaded TL

Dint=0.3�0 Dint=0.8�0 Dint=0.3�0 Dint=0.8�0

Zint /�0 ��� 400.9 45.0 527.8 50.2

�gr 0.49 0.73 0.64 0.90

� �dB/1000�0� 0.13 0.16 0 0

Wfun 0.305 0.256 0.759 0.951

Number of modes below 100�0 977 963 26 13

�pfun/ ��0EQ
2 T0�a 150.3 105.9 946.9 1486.8

�pnf / ��0EQ
2 T0�a 1.1�10−3 1.7�10−3 1.9�10−3 −1.2�10−3

Q �qe /m�b 1.7�1011 5.4�1011 6.8�1010 1.4�1011

�pacc/ ��0EQ
2 T0�a 708.2 282.2 2995.2 2730.4

�pacc/ ��0E0
2T0�a 773.7 436.2 526.4 305.8

aValues for Lacc=1000�0 and M =1000.
bValues for �0=1.55 �m.
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greater than 0.5% of �pfun. Evidently, the fundamental mode
is responsible for almost all of the impact of the wake-field
on the structure, and this difference between �pnf and �pfun
is bigger when Wfun is larger, as can be seen in Table I where
both values are given for M =1000. Note that �pnf may have
negative values, as it includes cross-product terms.

As the impact of the wake-field itself on the guiding struc-
ture has been established, we may now give a rough estimate
of the impact in a practical acceleration scheme, where both
the wake-field and the driving laser are present. Since the
length of the moving train is �M −1��0, and it moves at c,
whereas the laser pulse propagates at the group velocity of
the structure vgr, it follows that the minimal duration of the
laser pulse that ensures overlap of the two is given by

�p

T0
= � 1

�gr
− 1	Lacc

�0
+

M − 1

�gr
. �39�

The laser pulse may be tapered to cancel the decelerating
effect of the wake-field on trailing bunches, so that on the
average in time, all microbunches are subject to the same
accelerating gradient E0�1 GV/m. Assuming that the laser
pulse can peak at 2E0, and considering that after the last
microbunch, half of this peak cancels the decelerating field,
then MWfun�Eq�E0. Under this approximation, the total
charge that can be accelerated in the train is

Q �
2�0DintE0

Wfun
, �40�

and the impulse due to both the fundamental mode of the
wake and the driving laser is given by

�pacc �
1

4
�0E0

2�p =
1

4
�0EQ

2 Wfun
2 �2�p. �41�

The values of Q for the four structures considered above
are given in Table I in terms of the electron charge qe for

�0=1.55 �m, as well as �pacc for M =1000. Two normaliza-
tions of �pacc are given in Table I, considering Eq. �41�. The
first is a normalization by �0EQ

2 T0, showing the impulse ex-
perienced by the structure relative to the amount of charge
accelerated, and therefore, structures with a smaller Wfun or a
larger vgr �smaller �p� are favorable. For the Dint=0.3�0
Bragg structure, the total acceleration impulse �pacc is about
five times larger than the wake alone impulse �pfun, while
for the other structures this ratio is smaller.

The second normalization of �pacc given in Table I is
�pacc / ��0E0

2T0�= 1
4�p /T0, which is relative only to the accel-

erating gradient, and includes only the influence of vgr
through �p. This normalization allows a comparison between
the different structures of the absolute values of the impulse,
showing that the largest impulse is of the Dint=0.3�0 Bragg
structure, as it has the smaller group velocity. However, the
first normalization shows that relative to the amount of
charge accelerated, this structure has a smaller impulse than
that of the dielectric loaded transmission lines, whose wakes
have a large projection on the fundamental mode.

VI. DISCUSSION

Through a detailed analysis of the wake-field in the opti-
cal Bragg acceleration structure, it was shown that the impact
of the wake on the structure is almost solely due to the fun-
damental mode. This analysis, which uses the residue theo-
rem in the wake-field integral, emphasizes the distinction
between open structures, such as the Bragg structures, and
closed structures such as the dielectric loaded planar trans-
mission line. In open structures, moving charges excite a
large number of modes, most of which are leaky by nature,
exponentially decaying behind the bunch, contrary to closed
structures, where truly guided modes are excited. Neverthe-
less, based on the general proof that was given in Sec. IV B,
in both cases the deceleration force on a single particle is
identical, depending only on the vacuum tunnel width and
the permittivity of the adjacent dielectric layer.

In the Dint=0.3�0 Bragg structure, for instance, the funda-
mental mode is responsible for only 30% of the deceleration
force �Wfun�0.3�. This may lead to the erroneous conclusion
that the remainder of the modes may have a significant im-
pact on the structure. However, the present analysis shows
that the nonfundamental modes have a relatively strong ex-
ponential decay, or may be guided modes with very small
amplitudes. Consequently, the impact that results from the
nonfundamental modes is considerably smaller than that of
the fundamental, as seen in Fig. 7 and Table I. It is also
evident from Table I that the Bragg structure has an advan-
tage over the closed dielectric loaded planar transmission
line, since for the same train of bunches, the amplitude of the
fundamental mode it excites is lower, thus less interfering
with the acceleration of trailing bunches in the train, and
creating a smaller impact on the structure.

Since the fundamental mode, which is due partly to the
driving laser and partly to the wake-field, is responsible for
virtually all of the electromagnetic forces on the structure, it
is sufficient to employ the cw analysis of Sec. III in order to
examine the possible implications on the acceleration struc-
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the train M, for four structures.
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ture. In addition to the expression for the total transverse
pressure given by Eq. �12�, we were able to obtain, as an
outcome of this analysis, two simple scaling laws for the
maximal volume force density �Eq. �16�� and for the maxi-
mal surface forces density �Eq. �17��. We have already stated
that the total transverse pressure on one of the Bragg mirrors,
as given by Eq. �12�, is �Fx,T��2.2�106 N/m2 if we con-
sider an accelerating field of E0=1 GV/m. Assuming that
one Bragg mirror in the structure has an area of 1�1 mm2,
the total transverse force on the mirror is 2.2 N. For a mirror
thickness of 50 �m and material density of about 2 g/cm3,
we obtain that this force is six orders of magnitude larger
than the gravitational force on the mirror, indicating that the
radiation pressure is by no means negligible.

On the other hand, from the perspective of material
strength and the possibility of crack formation, the situation
is different. The order of magnitude of the pressures in the
Dint=0.3�0 Bragg structure including the internal pressure
�Fpr�, as shown in Fig. 3, is 106–107 N/m2. According to
rough theoretical estimates, it would be reasonable to assume
that an internal pressure below E�Y� /�, where E�Y� is Young’s
modulus, may be sustained without damage to the structure
�25�. Young’s modulus for SiO2 is 72.6 GN/m2, whereas for
Si it is 162 GN/m2 �26�. It follows that the electromagnetic
pressures in the structure under consideration are at least
three orders of magnitude below the theoretical threshold

E�Y� /�. Moreover, even if Dint is increased to 0.8�0, there is
a difference of more than two orders of magnitude between
the obtained pressure and E�Y� /�. It is also worth noting that
a gradient significantly larger than 1 GV/m would be unac-
ceptable since it would cause material breakdown �8� long
before reaching the radiation pressure damage threshold. We,
therefore, conclude that under the assumptions considered
here, the electromagnetic forces on the planar Bragg accel-
eration structure do not pose a threat to the device.

Finally, we point out that the analysis given here of the
effect of a moving electron bunch on the planar Bragg struc-
tures may suggest a method of measurement of the amount
of charge in the bunch. It may be possible to mechanically
measure the instantaneous pressure or total impulse on one
of the mirrors, by which estimating the total charge. Such a
microsystem may rely, for example, on an optical spring
where the mirror is balanced from the side opposite to that of
the charge by a superposition of two electromagnetic modes
�13�.
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